skip to main content


Search for: All records

Creators/Authors contains: "Kong, Weihao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    n modern supervised learning, there are a large number of tasks, but many of them are associated with only a small amount of labelled data. These include data from medical image processing and robotic interaction. Even though each individual task cannot be meaningfully trained in isolation, one seeks to meta-learn across the tasks from past experiences by exploiting some similarities. We study a fundamental question of interest: When can abundant tasks with small data compensate for lack of tasks with big data? We focus on a canonical scenario where each task is drawn from a mixture of k linear regressions, and identify sufficient conditions for such a graceful exchange to hold; there is little loss in sample complexity even when we only have access to small data tasks. To this end, we introduce a novel spectral approach and show that we can efficiently utilize small data tasks with the help of Omega(k^3/2) medium data tasks each with Omega(k^1/2) examples. 
    more » « less
  2. A common challenge faced in practical supervised learning, such as medical image processing and robotic interactions, is that there are plenty of tasks but each task cannot afford to collect enough labeled examples to be learned in isolation. However, by exploiting the similarities across those tasks, one can hope to overcome such data scarcity. Under a canonical scenario where each task is drawn from a mixture of k linear regressions, we study a fundamental question: can abundant small-data tasks compensate for the lack of big-data tasks? Existing second moment based approaches show that such a trade-off is efficiently achievable, with the help of medium-sized tasks with k^1/2 examples each. However, this algorithm is brittle in two important scenarios. The predictions can be arbitrarily bad even with only a few outliers in the dataset; or even if the medium-sized tasks are slightly smaller with. We introduce a spectral approach that is simultaneously robust under both scenarios. To this end, we first design a novel outlier-robust principal component analysis algorithm that achieves an optimal accuracy. This is followed by a sum-of-squares algorithm to exploit the information from higher order moments. Together, this approach is robust against outliers and achieves a graceful statistical trade-off. 
    more » « less
  3. Consider a setting with N independent individuals, each with an unknown parameter, p_i in [0,1] drawn from some unknown distribution P*. After observing the outcomes of t independent Bernoulli trials, i.e., Xi ~ Binomial(t, p_i) per individual, our objective is to accurately estimate P*. This problem arises in numerous domains, including the social sciences, psychology, healthcare, and biology, where the size of the population under study is usually large while the number of observations per individual is often limited. Our main result shows that, in the regime where t << N , the maximum likelihood estimator (MLE) is both statisticallyminimax optimal and efficiently computable. Precisely, for sufficiently large N , the MLE achieves the information theoretic optimal error bound of O(1/sqrt(t log N)) for N< exp(t), and O(1/t) for N> exp(t), with regards to the L1 distance between the true cdf and the estimated cdf. 
    more » « less
  4. Consider a setting with N independent individuals, each with an unknown parameter, p_i in [0,1] drawn from some unknown distribution P*. After observing the outcomes of t independent Bernoulli trials, i.e., Xi ~ Binomial(t, p_i) per individual, our objective is to accurately estimate P*. This problem arises in numerous domains, including the social sciences, psychology, healthcare, and biology, where the size of the population under study is usually large while the number of observations per individual is often limited. Our main result shows that, in the regime where t << N , the maximum likelihood estimator (MLE) is both statistically minimax optimal and efficiently computable. Precisely, for sufficiently large N , the MLE achieves the information theoretic optimal error bound of O(1/sqrt(t log N)) for N< exp(t), and O(1/t) for N> exp(t), with regards to the L1 distance between the true cdf and the estimated cdf. 
    more » « less
  5. We consider the problem of estimating how well a model class is capable of fitting a distribution of labeled data. We show that it is possible to accurately estimate this “learnability” even when given an amount of data that is too small to reliably learn any accurate model. Our first result applies to the setting where the data is drawn from a d-dimensional distribution with isotropic covariance, and the label of each datapoint is an arbitrary noisy function of the datapoint. In this setting, we show that with O(sqrt(d)) samples, one can accurately estimate the fraction of the variance of the label that can be explained via the best linear function of the data. For comparison, even if the labels are noiseless linear functions of the data, a sample size linear in the dimension, d, is required to learn any function correlated with the underlying model. Our estimation approach also applies to the setting where the data distribution has an (unknown) arbitrary covariance matrix, allowing these techniques to be applied to settings where the model class consists of a linear function applied to a nonlinear embedding of the data. In this setting we give a consistent estimator of the fraction of explainable variance that uses o(d) samples. Finally, our techniques also extend to the setting of binary classification, where we obtain analogous results under the logistic model, for estimating the classification accuracy of the best linear classifier. We demonstrate the practical viability of our approaches on synthetic and real data. This ability to estimate the explanatory value of a set of features (or dataset), even in the regime in which there is too little data to realize that explanatory value, may be relevant to the scientific and industrial settings for which data collection is expensive and there are many potentially relevant feature sets that could be collected. 
    more » « less
  6. We consider the problem of accurately recovering a matrix B of size M by M, which represents a probability distribution over M^2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Many aspects of this problem---both in terms of learning and property testing/estimation and on both the algorithmic and information theoretic sides---remain open. Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient (and practically viable) algorithm that accurately recovers the underlying M by M matrix using O(M) samples} (where we assume the rank is a constant). This linear sample complexity is optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. Additionally, we provide an even stronger lower bound showing that distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by a well-conditioned Hidden Markov Model with two hidden states requires Omega(M) observations, while our positive results for recovering B immediately imply that Omega(M) observations suffice to learn such an HMM. This lower bound precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs. 
    more » « less